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Abstract

X-ray diffraction is used to assess the development of residual stresses within the grains of Zr alloy tubes processed via cold pilgering.
A modified elastoplastic self-consistent model was used to simulate the texture and the internal stresses developments. The influence and
the role of elastoplastic anisotropy were also studied and explained in this work. The contribution and the magnitude of the first- as well
as the second-order residual stresses were correctly evaluated using information from the model. Comparison between the X-ray diffrac-
tion results (texture and residual strains) and the simulations confirms that prismatic slip is the main active deformation mode in this
alloy under large strain.
� 2007 Elsevier B.V. All rights reserved.

PACS: 46.35.+z; 61.10.Nz; 62.20.Fe; 81.05.Bx; 83.60.�a
1. Introduction

Zirconium alloys are extensively used in various types of
fission reactors. The development of zirconium alloys is
essentially due to the nuclear industry, where zirconium
alloys have been regarded as the proven structural material
[1]. In this work, we are concerned by the manufacturing
process of M5TM alloy cladding tubes by cold pilgering. This
process is a tube forming operation where the inner radius
and wall thickness are both progressively reduced between
a fixed axisymmetric mandrel and forward- and backward-
rolling grooved dies [2]. This process consists in a sequence
of three rolling passes. After each pass, the tube is heat
treated at a certain annealing temperature, which is suffi-
cient to induce recrystallization, except for the last heat
treatment, which is done just for stress relieving.
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Zr alloys have a hcp crystal structure and exhibit high
anisotropic plastic properties at mesoscopic (grain) and
macroscopic levels with various active deformation modes.
These properties and the crystallographic texture explain
the appearance and development of important residual
stresses when an elastoplastic deformation is introduced.
These stresses are termed intergranular or second-order
stresses. They depend on initial and induced crystallo-
graphic textures. The engineering consequences of sec-
ond-order stresses with strong texture may be severe. The
texture and stresses at a given step in the fabrication pro-
cess will influence the formability with which the next
mechanical process might be realised. The texture of the
material will have a significant effect on its in-service per-
formance because irradiation creep, yield strength, stress
corrosion cracking resistance, for example, are strong func-
tions of texture. During the process, internal stresses can
also induce defects such as transverse cracks or surface
damage [1,3].
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Therefore, metal forming processes optimization such as
rolling requires knowledge of the evolution of the mate-
rial’s anisotropic elastoplastic behaviour during the defor-
mation operations. Polycrystal models for numerical
prediction of deformation processes have undergone an
important development during the last years. The model-
ling of the plastic deformation of metallic polycrystals
can be carried out by deductive methods based on strain
mechanisms and scale transition methods like self-consis-
tent (SC) models [4–6]. Polycrystal models are typically
evaluated by their ability to simulate the mechanical
behaviour. For large deformations (>20% strain), model
predictions are readily compared to textures determined
experimentally by X-ray or neutron diffraction.

Hexagonal materials are characterised by a wide variety
of possible deformation systems. It is necessary to know
both the texture and the deformation mechanisms to be
able to model these mechanical properties. This requires,
in particular, a proper knowledge of the deformation
mechanisms with their corresponding CRSS (critical
resolved shear stresses). Only few data are available for
CRSS in the literature. Moreover, the CRSS generally
depend significantly on the contents of alloying elements.
In spite of this very basic knowledge of these data, many
authors have tried to model the mechanical properties of
hexagonal materials after large deformation. In these cases,
the approach consists in finding the set of material param-
eters offering the best agreement with crystallographic tex-
ture by applying a polycrystalline model. Realistic
simulations of deformation texture development of Zr
alloys can be done using the viscoplastic SC model [7–9].
The cold pilgering texture of zirconium alloy has been also
studied with this kind of approach [3,10]. The confronta-
tion between simulations and experimental texture shows
that the prismatic slip is probably the most active system
for this process.

In the present work, a different approach is proposed to
validate the accuracy and the relevance of theoretical
model for hexagonal material in a large deformation
framework. Both texture and residual stresses characterisa-
tion by diffraction have been used simultaneously to
evaluate polycrystal models for non-cubic material. A
confrontation between experimental observations (X-ray
diffraction) and predictions of an elastoplastic self-consis-
tent (EPSC) model has been made in order to obtain more
information about the different factors responsible for the
appearance of residual second-order stresses and determine
with more accuracy the set of deformation systems. This
comparison allows a better understanding and interpreta-
tion of diffraction and mechanical results.

The aim of the present study is the analysis and under-
standing of the anisotropic elastoplastic behaviour evolu-
tion during the cold pilgering operation of zirconium
alloy. A modified EPSC model was used to predict the
behaviour of zirconium alloy cladding tubes during the last
rolling pass. This approach is well suited to study aniso-
tropic materials with multiple slip and twinning modes
because it allows for different deformation depending on
the relative orientation between the grain and the average
medium. X-ray diffraction results (texture and residual
stresses) obtained at the initial and final states provide an
accurate experimental base for determining the appropriate
model parameters and find a realistic combination of
deformation systems. The theoretical stresses are compared
with the experimental results obtained by X-ray diffraction.
The results predicted by the SC model are discussed. In
hexagonal alloys, like those of zirconium, plastic anisot-
ropy induces plastic incompatibility stresses. These inter-
granular plastic stresses must be taken into account for a
proper interpretation of X-ray experimental data. Conse-
quently, a specific study concerning the influence of these
second-order stresses, as well as the first-order (macro-
scopic) stresses, has also been performed.

2. Experimental procedure

The analysis was performed for the last cold pilgering
pass. In this work, we analysed the texture and residual
stresses in two states: before and after the third pass cold
work. At the initial state, tubes have been submitted to a
recrystallization treatment at 700 �C. At the initial state,
the dimensions of M5TM tubes are: 17.8 mm external diam-
eter and 2 mm thickness. The dimensions after forming
(195% total strain) are 8.37 mm and 0.6 mm. The chemical
composition is (Wt%-balance = Zr): Nb(1.0), Fe(0.035)
and O(0.13).

2.1. Texture analysis

X-ray diffraction analysis was performed with four cir-
cles XRD3003PTS SEIFERT goniometer. Ka copper radi-
ation was used. The X-ray beam output collimator had
0.5 mm diameter. The diffraction peaks were recorded with
a position sensitive detector (PSD). We measured incom-
plete pole figures (PF) on a 5 · 5� grid with tilt and azimuth
angles ranging from 0� to 60� and 0� to 360�, respectively.
For each experimental direction, the diffraction pattern
was adjusted, using a nonlinear least squares analysis and
assuming pseudo-Voigt peak profiles for each peak, to eval-
uate background noise and to obtain peak intensities. The
study of samples having a curved geometry not only
requires an accurate positioning of the samples but also take
into account the geometric effects induced by XRD direc-
tional feature. A theoretical model based on a ray-tracing
method was used to take into account the geometric effects,
which modify the collected intensities. More details of this
approach can be found in [11]. Correction coefficients
accounting for the ‘geometrical texture’ of the samples as
well as absorption corrections are calculated. The obtained
results are used to correct experimental pole figures. The
orientation distribution function (ODF) calculation has
been performed with experimental PF {0002}, f10�11g,
f11�10g and f10�13g with help of WIMV algorithm imple-
mented in the BEARTEX program package [12].
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Fig. 1. (hk l) plane normal orientation in a basal stereographic projection
of the hexagonal lattice.
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2.2. Residual stresses

We present succinctly the principles of residual stresses
determination by X-ray diffraction and the key role played
by elastic and plastic anisotropy properties on the interpre-
tation of the data. More details can be found in Refs.
[13–17].

Residual stresses are generated by inhomogeneous plas-
tic deformation on two scales: one length scale is given by
the size of the component, the second by the size of the
grain forming the polycrystalline aggregate. The inhomo-
geneity on the sample length scale gives the macroscopic
stress field or first-order stress, while the inhomogeneity
on the grain size scale gives the intergranular or second-
order stress. Both are superimposed, and X-ray diffraction
measurements give a combination of first- and second-
order stresses. In order to determine first-order residual
stresses, intergranular stresses must thus be subtracted
from the given stress field. The important question is how
to obtain the macroscopic strain from the measured strain
in a hexagonal component observed with the aid of a spe-
cific {hk i l} plane when we have a superposition of both
macroscopic and important intergranular contributions.
In the present work, the method proposed by Baczmanski
et al. [13] for cubic material is used and extended to hexag-
onal material.

For a direction of the scattering vector defined by the
angles / and w, the measured strain can be expressed by

heð/;w; hk i lÞiV d
¼ F ijð/;w; hk i lÞrI

ij

þ eIIpið/;w; h k i lÞ
� �

V d
: ð1Þ

Fij(/,w,hk i l) are the diffraction elastic constants for the
{hk i l} reflection and < >V d

is the average over diffracting
grains for the {hk i l} reflection. heIIpið/; w; hk i lÞiV d

(‘pi’
means plastic incompatibility) is the elastic strain caused
by plastic incompatibilities of grains. rI denotes the macro-
scopic stress tensor.

The relation (1) shows clearly that the measured strain
cannot be identified to the macroscopic strain if the mate-
rial presents plastic anisotropic properties. The presence of
intergranular strain after a mechanical solicitation influ-
ences the measured strain. Generally, the interpretation
of experimental data is based on the unjustified assumption
that heIIpið/; w; hk i lÞiV d

¼ 0. In our study, we propose to
quantify the importance of these intergranular stresses
and to show their influence in the interpretation of the
experimental results.

With the Baczmanski’s method, some information
obtained from the scale transition method are used. The
mesoscopic residual stresses after the rolling process for
each grain can be predicted. So, the average
heIIthð/;w; hk i lÞiV d

(‘th’ means theoretical model) strain
for diffracting grains volume can be calculated. The second
term in Eq. (1) is assumed to be approximated by

heIIpið/;w; hk i lÞiV d
¼ qheIIthð/;w; hk i lÞiV d

: ð2Þ
q is a constant factor. It is introduced in order to find the
real magnitude of elastic strains of plastic origin assuming
that their variation with w and / angles is correctly de-
scribed by the model. Using a EPSC model, we predict val-
ues of the residual stresses for every crystalline orientation
and we calculate the average heIIthð/;w; h k i lÞiV d

strain for
the diffracting volume.

For known Fij(/,w,hk i l), theoretically predicted strain
heIIthð/;w; hk i lÞiV d

and measured deformations heIIthð/;w;
hk i lÞiV d

, the other quantities from the Eq. (1) (the
unknowns are q and the first-order stress) can be deter-
mined using a nonlinear fitting procedure to give a com-
plete description of the stress (and strain) field in a
plastically deformed polycrystalline material.

We have determined the evolution of internal stresses
due to plastic anisotropy in the deformed sample after roll-
ing test. These experiments were carried out on a
XRD3003PTS SEIFERT goniometer with Cr Ka and
CuKa radiations. An X goniometric assembly with a posi-
tion sensitive detector were used. Three plane families were
studied with Cr radiation: f10�14g at 2h = 156.7�, f20�22g
at 2h = 137.2� and {0004} at 2h = 125.6�. With Cu radia-
tion, the three plane analysed were: f20�25g at 2h = 136.8�,
f30�32g at 2h = 123.0� and f21�33g at 2h = 117.8�. Fig. 1
shows the (hk l) plane normal orientation in a basal stereo-
graphic projection of the hexagonal lattice. Diffractograms
were recorded for sixteen tilt angles w varying between
�48� and +45� and for one azimuthal angle / = 0�. The
direction / = 0� corresponds to the rolling direction. The
X-ray beam output collimator had a 0.5 mm diameter.
The errors due to geometry effects is weak with the X-ray
beam diameter used [18]. The set of diffraction peaks
obtained for all the tilt angles was fitted simultaneously
with a pseudo-Voigt function, which took into account
the Ka1–Ka2 contribution. The centroid of the fitted diffrac-
tion line was taken as the peak position. For each diffrac-
tion peak, the background was fitted by a polynomial
function. The diffraction elastic constants Fij(/,w,hk i l)
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are theoretically calculated with an elastic SC model. The
influence of the texture on these constants is taken into
account by weighting single crystal elastic constants with
the texture function (1000 grains). According to Ref. [15],
the Fij(/,w,hk i l) are defined as

F ijð/;w; h k i lÞ ¼
@heð/;w; hk i lÞiV d

@rI
ij

: ð3Þ

They connect the strain determinable by diffraction meth-
ods to the stress rI within a textured sample. For their cal-
culation, the strains in the measuring direction m have to
be averaged considering the crystals with the {hk i l} nor-
mal parallel to the direction m (described by the angles
(/,w)) and being rotated by any angle a about it.

F ijð/;w; h k i lÞ ¼

R 2p
0

@eII
klðXÞ
@rI

ij
f ðXÞmkmldaR 2p

0
f ðXÞda

ð4Þ

eII(X) is the mesoscopic strain tensor of each contributing
crystal defined by an orientation X. f(X) denotes the orien-
tation distribution function of the crystallites (the experi-
mental texture of the final tube is used in the paper).

At this point, a model assumption about the dependence
of the crystal strains on the stress rI is required:

oeII
klðXÞ
orI

ij
¼ AðXÞ; ð5Þ

with

eIIðXÞ ¼ AðXÞ::rI: ð6Þ

A(X) is determined by the elastic self-consistent model
(Kröner–Eshelby model). Only the experimental ODF is
required to determine the Fij.

After that, a stress tensor rexp
ij ðhk i lÞ is calculated by the

following relation:

heð/;w; hk i lÞiV d
¼ F ijð/;w; hk i lÞrexp

ij ðhk i lÞ: ð7Þ

These experimental stresses vary with the {hk i l} reflection
due to the plastic anisotropy. In this case, the second-order
stresses of plastic origin heIIpið/; w; hk i lÞiV d

in relation (1)
is supposed to be equal to 0. In a second step, the complete
relation (1) is used with an EPSC model to determine both
the first- as well as the second-order stresses.

3. Self-consistent modelling

The principles for using the SC model to predict elasto-
plastic deformation were proposed by Kröner and Hill
[19,20]. In the present work, the model developed in Ref.
[4] is used. For a more detailed description of the EPSC
model, see Refs. [21,22]. Each grain is assumed to have
the form of an ellipsoidal inclusion in a homogeneous effec-
tive medium (HEM) whose properties are the average of all
the other grains in the assembly. The polycrystal is repre-
sented by a weighted discrete distribution (1000 grains) of
orientations (Euler angles (u1/u2)). Lattice rotation (reori-
entation by slip and twinning) and texture changes are
incorporated in the model. For the sake of clarity, the small
strain formulation is used for the model presentation.

The principal modification, which is rapidly discussed
here, concerns the selection of active slip systems. The
new algorithm is much faster and resolves the problem of
the ambiguous selection of slip systems. The plastic flow
can take place in a grain when the Schmid criterion is ver-
ified, i.e. slip (or twinning) occurs if the resolved shear
stress sg on a system g is equal to the critical value sg

c

depending on the hardening state of the slip system. This
necessary condition is insufficient, and the complementary
condition, which states that the increment of the resolved
shear stress must be equal to the incremental rate of the
CRSS, has to be checked simultaneously. The resolved
shear stress is defined as the projection of the mesoscopic
stress tensor rII on the considered deformation system. In
small strain formulation, one has:

sg ¼ Rg::rII ¼ sg
c and _sg ¼ Rg:: _rII ¼ _sg

c ; ð8Þ

where Rg is the Schmid tensor on a system g. A..B denotes
the double scalar product AijklBklmn using the Einstein sum-
mation convention.

The main problem is to determine which combination of
slip systems will actually be activated at each step of the
plastic deformation path. In this case, all possible combina-
tions of potentially active systems must be scanned to find
one that satisfies the two previous conditions (Eq. (8))
simultaneously. Because this must be done in a large defor-
mation framework, running time considerations become
one of the main problems of the model. Moreover, this
method can give several equivalent solutions for some
hardening matrices [23]. Recently, Ben Zineb et al. [24]
have proposed a new formulation. This one was extended
to the polycrystalline model framework by Lorrain et al.
[25]. The accuracy of the simulations was also evaluated
at the meso- and macroscopic levels by referring to
mechanical experiments (tensile tests, neutron diffraction)
[26]. It should be noticed that the ‘classic’ EPSC model
and the modified one give similar results: the main active
systems, predicted texture and residual strains are similar.
Based on the work of Ben Zineb et al., the slip rate on a
system g can be expressed with the following equation:

_cg ¼ Mg sg; sg
c

� �
_sg: ð9Þ

The slip rate is linked to the resolved shear stress rate
through a function Mg.

The hardening parameter Mg is given by [24]:

Mg ¼ 1

Hgg

1

2
1þ th k0

sg

sg
c
� 1

� �� �� �� 	
1

2
ð1þ thðk1 _sgÞÞ

� 	

� 1

2
ð1þ th k2s

gð ÞÞ
� 	

; ð10Þ

where k0, k1 and k2 are numerical parameters. Hgg is the
self-hardening parameter defined in Eq. (12). The Hyper-
bolic tangent function was tested and used because it per-
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mits to reproduce the mechanical and hardening behav-
iours. The slip rate can be written as

_cg ¼ Mg _sg

¼ MgRg:: _rII ðwithout summation over gÞ: ð11Þ

If an additive decomposition of strain rate _eII on elastic and
plastic parts is used:

_eII ¼ _eIIe þ _eIIp: ð12Þ
By using the usual generalized Hooke’s law and Eq. (11),
the slip rate on a system g becomes:

_cg ¼ MgRg::ðc::_eIIeÞ: ð13Þ
The plastic strain rate _eIIp is related to the tensor Rg and the
slip rate _cg in the system g by the expression:

_ep ¼
X

g

Rg _cg: ð14Þ

With Eqs. (12)–(14), one obtains, after calculations, the fol-
lowing relation:

_cg ¼
X

h

dgh þMgRg::c::Rh
� ��1

::MhRh::c::_eII: ð15Þ

It is usual to introduce a hardening matrix Hgh to describe
the evolution of CRSS rate in a system g as a function of
the plastic slip (or twinning) on the other systems:

_sg
c ¼

X
h

H gh _ch: ð16Þ

With relations (8), (11) and (12) and the usual generalized
Hooke’s law, the constitutive elastoplastic relationship for
the single crystal can be deduced:

_rII ¼ c�
X

g

X
h

c::RgðdghþMgRg::cðXÞ::RhÞ�1MhRh::c

" #
::_eI

¼ ‘::_eII;

ð17Þ
where ‘ is the tensor of tangent elastoplastic moduli of the
single crystal.

The relation between the stress rate _rI and the strain rate
_eI can be written for the macro-scale as follows:

_rI ¼ L::_eI ; ð18Þ
where L is the macroscopic tangent modulus for the fic-
tional average homogeneous medium. The local strain
and stress rates can be obtained classically through the
localization A and concentration B tensors:

_eII ¼ Iþ Sesh::L�1::D‘
� ��1

::_eI ¼ A::_eI; ð19Þ

_rII ¼ ‘:: Iþ Sesh::L�1::D‘
� ��1

::L�1:: _rI ¼ ‘::A::L�1:: _rI ¼ B:: _rI;

ð20Þ

where D‘ = ‘ � L. Sesh is the Eshelby tensor.
The volume averages of the local stress and strain ten-

sors must coincide with the overall strain and stress. After
some algebraic calculations, these conditions give the over-
all elastoplastic tensor L as a weighted average of the mes-
oscopic tensor ‘:

L ¼ ‘:: I þ Sesh::L�1::D‘

 ��1

D E
: ð21Þ

Eq. (21) is a nonlinear implicit equation because Sesh de-
pends on the unknown L in the framework of EPSC the-
ory. The Eshelby tensor is calculated by an integral
equation [21] that takes the plastic anisotropy fully into ac-
count. This equation is solved iteratively. Once L is known,
by specifying an overall stress or strain increment, the mod-
el can give the corresponding stress or strain tensors for
each orientation. Therefore, the mechanical response of
the polycrystal can be described.
3.1. Data used in the simulations

For hexagonal materials, like zirconium, because of the
relatively strong crystallographic anisotropy, several modes
may be active: slip and/or twinning systems. In such mate-
rials, prismatic glide f10�10gh11�20i is reported to be the
main active deformation mode [27,28]. First-order pyrami-
dal slips f10�1 1gh1 1�23i and f10�11gh11�20i are generally
presented as secondary slip modes [28,29]. At room tem-
perature, twinning has also been observed in zirconium
samples [30,31]. Twinning of f10�1 2g and f11�21g types
is expected in extension along the~c axis whereas twinning
of f11�22g and f10�11g types is expected in compression
along the~c axis.

The initial CRSS are taken as identical for all systems of
a system type. The deformation systems introduced in the
model are assumed to be: prismatic slip denote prhai,
first-order pyramidal slip (pyrhc + ai and pyrhai) and
f10�12g twinning (ttw).

Different authors [3,10] have shown that a good qualita-
tive agreement with the experimental textures and the
deformation systems activity for cold-rolled Zr alloys can
be obtained selecting prhai, pyrhc + ai, ttw and/or ctw
(compressive twinning) as active deformation modes. Basal
slip is not included in the set of deformation modes because
some discrepancies appear with the X-ray results if this slip
system is an active deformation mode.

In this work, we consider a linear hardening law [4]
where the coefficient Hgr is equal to Hgg for any deforma-
tion modes r: _sg ¼ H gP

r _cr, that is, latent hardening is
equal to the self-hardening. In the model, CRSS and the
hardening law for slip and twinning are considered as con-
trolling parameters. Their values depend on many factors
(oxygen content, grain size, temperature. . .) [32] and are
unknown. Contrary to previous works [3,10], the
approach used in this study consists in finding the set of
material parameters offering the best agreement with crys-
tallographic texture and residual stresses by applying the
EPSC model. In a first step, the effect of deformation
modes on the predicted strain (and stress) and texture
was systematically analysed. Each deformation mode
was applied within the EPSC model independently, in



Table 1
Material parameters used in the simulations

sprhai (MPa) spyrhai (MPa) spyrhc + ai (MPa) sttw (MPa)
95 175 310 180

Hprhai (MPa) Hpyrhai (MPa) Hpyrhc + ai (MPa) Httw (MPa)
80 170 200 180
k0 k1 k2 b (MPa�1)
25 1 1 1/Hrr

Fig. 2. Initial (a) and final (b) {0002} and f10�10g PF.
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order to examine its effect on the strain accumulation and
the texture. The effect of combining two or three systems
was also examined. The value and the sign of the pre-
dicted strains were much more different than those
detected experimentally. The observed trends and magni-
tude of texture and strains were not reproduced correctly
by the model in the case of one or two deformation mode.
Finally, all the four deformation systems were applied
simultaneously with different set of material parameters
(CRSS, hardening matrix). The best agreement was found
with the values given in Table 1. A comparison with
experimental texture and stresses constitutes an accurate
and relevant validation of the choice of deformation sys-
tems. It is a good way of evaluating the overall agreement
between the model and the experiment. For example, it is
possible to explain and reproduce the texture without the
pyrhai system. However the model cannot simulate cor-
rectly experimental residual stresses. Only the four systems
with prhai as the main deformation mode can explain
each experimental result. The comparison between stress
and texture obtained with X-ray diffraction measurements
on these samples and simulations is presented in the fifth
part.

4. X-ray diffraction results

Initial textures are shown in Fig. 2, where ‘RD’ denotes
the rolling direction, ‘TD’ the transverse direction and
‘ND’ the normal one. It can be noticed that the initial tube
presents an asymmetry in the ND–TD plane despite a
chemical layer removal (50 lm). This phenomenon is not
linked to the friction due to the mechanical sollicitation.
The texture of the undeformed sample is probably due to
a recrystallization during the thermal treatment. The pris-
matic PF exhibits intensity maxima along the RD.

Fig. 2 also shows the PF after the mechanical tests. A
‘classic’ texture evolution is observed for the prismatic
and basal PF [28]. In the final state, the {0002} PF shows
a bimodal distribution of the intensity maxima in the NT–
TD plane at about 30� of the ND axis. This is typical for
this kind of sample.
Table 2
Experimental longitudinal stress rexp

11 ðhk i lÞ obtained with different crystallogr

Plane f21�33g f30�32g {0004
Stress (MPa) �334 ± 6 �376 ± 14 �185 ±

Errors values were determined from the standard deviations of the peak posit
The longitudinal stress rexp
11 ðhk i lÞ (/ = 0�) was termi-

nated with the relation (7). The residual stresses on the
undeformed sample are weak: �22 ± 17 MPa for the
{0004} plane, +23 ± 6 MPa for the f20�22g plane and
+73 ± 3 MPa for the f20�25g plane. These results show
that the initial mechanical state is relatively homogenous
within the sample and the thermal residual stresses are neg-
ligible. Table 2 shows the experimental results obtained
with X-ray diffraction at 195% strain. The stress values
vary strongly from one plane to another. For example,
rexp

11 ðhk i lÞ value reaches +189 ± 16 MPa for f10�14g and
�376 ± 14 MPa for f30�32g. X-ray measurements show
the effective existence of plastic anisotropy. As can be seen
from Eq. (1), the measured stress depends on a function of
the analysed plane family. Strain incompatibilities are pres-
ent at the mesoscopic level in the material; consequently,
the stresses obtained by X-ray diffraction depend on the
plane. The diffracting crystals are not the same for each
case and this allows us to deduce that different second-
order stresses exist, linked to a strong plastic anisotropic
deformation for these plane families. With the help of
FDO, it is possible to find the set of principal orientations,
which contribute to the diffracting volume for the different
w values (between �48� and +45�) and for each plane. For
example, because of the final texture, most of the f1 0�14g
planes have the ~c axis making an angle between 0� and
25� with the sample surface whereas this axis is located
preferentially between 25� and 80� in relation to the surface
for the f30�3 2g planes. Because of second-order stresses,
the obtained values are not directly related to those
obtained by macroscopic methods [33].
aphic planes

} f20�22g f20�25g f10�14g
39 �226 ± 24 �174 ± 19 +189 ± 16

ions as obtained from peak fitting.
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5. Simulations results and discussion

The EPSC model is used to simulate the residual inter-
granular strains (or stresses) and crystallographic texture
after loading along the RD. The mesoscopic stresses are
then averaged and projected on the /w directions to simu-
late the diffracting volume behaviour, and the simulated
crystallographic reorientation is also obtained.

The predicted PF for the final tube are given in Fig. 3.
As shown in this figure, there is an agreement between
the experiment results and the EPSC model. The principal
features of experimental texture are reproduced by the sim-
ulations. We clearly see the predicted basal poles that are,
preferentially oriented at 38� from RD in the RD–TD
plane. With the CRSS values chosen above, deformation
is accommodated through prhai and pyrhc + ai. As can
be seen in Fig. 4, the relative contribution of ttw is small.
At 195% deformation, the proportions of activated systems
are: 57% for prismatic mode, 35.2% for pyramidal slips
hc + ai, 7.8% for pyrhai and 0% for tensile twinning.
Finally, we obtain a reasonable distribution in agreement
with the experimental observations: prismatic glide is the
main active mechanism, pyramidal slip is a secondary slip
mode and twinning contributes very little to the plastic
deformation. The weak activation of the tensile twinning
is normal because it preferentially reorientates the grains
which~c axes are closed to the RD.
Fig. 3. Predicted PF {0002} and f10�10g after the cold-rolling process
(195% strain).
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Fig. 4. Relative contribution of each deformation mode to the total shear
as a function of deformation.
The theoretical values of the heIIthð/;w; h k i lÞiV d
strain

were predicted by the EPSC model for 195% strain. Apply-
ing Eq. (1) and fitting the results obtained from the model
to the experimental data obtained from the six crystallo-
graphic planes, the first-order stress tensor element
rI

11 and the q factor were determined. The results were
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Fig. 5. heð/;w; hk i lÞiV d
vs. sin2w estimated using the fitting procedure.

The experimental points are shown for 195% strain along the rolling
direction.



Table 3
Comparison of the stress values determined by two assumptions, i.e.
heIIpið/;w; hk i lÞiV d

6¼ 0 and heIIpið/;w; hk i lÞiV d
¼ 0

q rI
11 (MPa)

heIIpið/;w; hk i lÞiV d
6¼ 0 0.202 ± 0.081 60 ± 30

heIIpið/;w; hk i lÞiV d
¼ 0 – f10�14g plane f21�33g plane

189 ± 16 �334 ± 6
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obtained using the Fij(/,w,hk i l) calculated for samples
taking into account their texture. In order to visualize the
results of the calculation, the heð/;w; hk i lÞiV d

strain versus
sin2w (evaluated according to Eq. (1)) were compared in
Fig. 5 with those measured for the f10�14g, f20�22g and
f21�33g planes. The predicted results agree with the fact
that, in the heð/;w; hk i lÞiV d

vs. sin2w representation of
the deformed samples, the best fitting for the six studied
planes is obtained with prismatic slip as the main deforma-
tion mode. In order to show the influence of second-order
strain of plastic origin, Table 3 gives the first-order stress
calculated with and without the heIIpið/;w; hk i lÞiV d

term.
rI

11 is equal to 60 ± 30 MPa. If the second order ‘plastic’
stresses are supposed to be null (heð/;w; hk i lÞiV d

¼ F ijð/;
w; hk i lÞrexp

ij ðhk i lÞÞ, the experimental stresses are then:
rexp

11 ð10�14Þ¼þ189�16 MPa, rexp
11 ð21�33Þ¼�334�6 MPa

along the RD. This example allows us to conclude clearly
that the heIIpið/;w; hk i lÞiV d

term plays a key role for a cor-
rect interpretation of the X-ray diffraction results. The reli-
ability of q values seems to be correct compared with
previous work on cubic material [13]. It can be explained
by the overprediction of residual stresses by the self-consis-
tent model. It is a well-known feature of this model [34–36]
which is too ‘stiff’ because it does not take into account the
fluctuations of moduli in the matrix and the inclusion due
to the nonlinearity of the mechanical behaviour. Elasto-
plastic properties are considered as uniform inside the crys-
tallites. The formation of a particular microstructure
(dislocation band, wall, etc.) inside a crystal is neglected.
Discontinuities (grain boundaries, dislocation walls,. . .)
are supposed to have a weak influence on the average
behaviour of the aggregate, and dislocations annihilations
are not taken into account [37,38]. Nevertheless, the model
allows us to describe the evolution of residual stresses
whatever the plane. It permits to determine the macro-
scopic stress. This behaviour can only be explained with
prismatic slip as the main deformation mode and for the
same set of material parameters. For hexagonal materials
alloys, the value of second-order stress is important after
large plastic deformation.
6. Conclusions

X-ray diffraction experiments on Zr alloys tubes were
used to validate a polycrystal model in the large deforma-
tion framework. The present study highlights the useful-
ness of polycrystal model for exploring the active
deformation modes in hcp alloys. Reasonable agreement
between model predictions and experimental measure-
ments was observed for both the residual stresses and the
evolved deformation textures. Stresses obtained, thanks
to X-ray diffraction, are significantly different from one
family of lattice planes to another. These results can be
explained by the presence of first- and second-order stresses
of plastic origin. A self-consistent model has been used to
quantify the stress differences between these planes fami-
lies. The choice of prismatic slip as the main deformation
mode can explain simultaneously the experimental texture
and stress values for the six studied planes. These predicted
results can only be obtained for one single set of slip modes
and hardening parameters. This analysis shows that X-ray
diffraction stress analysis can constitute an effective valida-
tion or identification of a model. The influence of second-
order strain must be taken into account to get a correct
interpretation of X-ray diffraction results for hexagonal
material. The method used in this work allows the evalua-
tion of the magnitude of the first- as well as the second-
order residual stresses using some additional informations
from EPSC model.
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